86-0731-89578196 [email protected]
  • NEWS & EVENTS
  •  
  • Sputtering Targets News
  • Target Bonding News
  • Evaporation Materials News
  • Evaporation Sources News
  • Substrates & Wafers News
  • Powder News
  • Ceramic Sputtering Targets Manufacturing: Sintering

    How to manufacture ceramic or complex composite material sputtering targets? As a leading sputtering targets manufacturer, AEM Deposition has over 10 years experience in this respect. So, today we will talk about the sintering of ceramic sputtering targets, which will help you to know more about our production strength.

    Manufacturing ceramic or complex composite metairal is different from metallic combinations since metal can be readily melted, quenched and then shaped into various sizes, ceramic targets must be consolidated in such a way that the initial stoichiometry or original composition is not chemically altered from that of the preliminary starting material. In general this involves some form of powder metallurgical processing, i.e. the sintering of fine granules of powder into a solid form. The least complicated form of this sintering process is simple Hot Pressing.

    Hot Pressing is basically a high pressure low strain rate powder metallurgical process for forming powders, or powder compounds, at elevated temperatures and pressures high enough to induce sintering and creep. Sintering involves the atomic diffusion under energetic conditions supplied by the application of heat and/or pressure across the geometrical boundaries of the constituent particles. These fused particles are then held together by ionic and covalent bonds between the associated atoms or molecules. This diffusion eventually fuses the atomic particles by compacting them together, thus creating a solid composite mass of material. This is accomplished at a temperature below the liquidus temperature of the lowest melting point constituent, i.e. the material is held below the temperature of liquefaction.

    There are several types of Hot Pressing technologies (induction heating, field assisted sintering technique, indirect resistance heating, etc.) but the most common method of facilitating this sintering process is to place the powders that are to be consolidated into a simple Hot Press. The most frequently utilized form of such a Hot Press generally consists of a mechanical, or hydraulic, press used to apply pressure on two geometrically opposed rams, usually composed of solid carbon (graphite) rods with an outer diameter somewhat larger than the diameter of the solid mass of the target to be fabricated. These rams fit into a solid carbon (graphite) ring or slab with an inner diameter just slightly larger than that of the outer diameter of the mating rams. Along the outer diameter of the carbon die, or placed within the carbon slab itself positioned near the circumference of the inner diameter, heating rods are placed in a circular pattern evenly spaced apart.

    In operation, the bottom ram is generally in a fixed position about half way up from the bottom portion of the solid carbon block. The mixed and weighed powders are then poured into the inner diameter of the top portion of the carbon block on top of the lower ram. Then the top ram is placed into the mold and pushed in downward motion up against the powders that are to be consolidated.

    Once the rams are in place, a slight pressure is exerted on the top ram via the hydraulic press while a current is simultaneously applied to the heating elements from an associated power supply. Based on the metallurgical properties of the material constituents to be consolidated, both the pressure and the heat are slowly increased to a point where the pressure being applied begins to drop off. This can be noted on the pressure gauge associated with the hydraulic press. The significance of this pressure drop is the result of the individual particles starting to diffuse together and thus reducing the overall volume of the materials being consolidated. After this reduced pressure reaches an equilibrium, an additional pressure is then applied and held for a given length of time to allow for the diffusion process to reach a kinetic equilibrium. Of course each individual material requires a specific formula of rise and soak times in applying temperature and heat cycles to provide optimal metallurgical properties of homogeneity, density, phase purity, grain size, etc. but experience and practice can generally produce a well qualified product.

    Since this is a diffusion process, whereby the constituents are not actually melted, complex compositions such as metallic oxides, nitrides, carbides, borides, sulfides, etc. can all be sintered into solid shapes at, or near, their theoretical densities without decomposing into the elemental forms of their original constituents. This is the beauty of powder metallurgy, there is little or no decomposition. High temperature brittle materials such as refractory metals (tungsten, molybdenum, etc.) are also typically sintered rather than cast to avoid cracking during the cooling stages associated with the melting process.

    When the powders have been sufficiently consolidated, the current is removed from the heating elements and the pressure slowly released. Once everything has cooled back down to room temperature, the solid mass can be pressed out through the bottom of the carbon mold by removing the bottom ram and again applying a slight pressure to the top ram with the hydraulic press.

    The associated mass is essentially a near-net-shape in the size of the target that is to be produced. This material can then be finish machined, usually through diamond grinding with numerically controlled equipment, to the finial dimensional tolerances associated with the customer specifications.

    AEM Deposition has rich experience to produce ceramic sputtering targets, we provide we provide Oxide, Nitride, Sulfide, Carbide, Boride, etc. Sputtering targets for you choose, purity from 99.5% to 99.99%, high density and uniform grains. If you have any needs of sputtering targets, you can contact us right now.

    LATEST NEWS